The role of zero synapses in unsupervised feature learning

نویسنده

  • Haiping Huang
چکیده

Synapses in real neural circuits can take discrete values, including zero (silent or potential) synapses. The computational role of zero synapses in unsupervised feature learning of unlabeled noisy data is still unclear, thus it is important to understand how the sparseness of synaptic activity is shaped during learning and its relationship with receptive field formation. Here, we formulate this kind of sparse feature learning by a statistical mechanics approach. We find that learning decreases the fraction of zero synapses, and when the fraction decreases rapidly around a critical data size, an intrinsically structured receptive field starts to develop. Further increasing the data size refines the receptive field, while a very small fraction of zero synapses remain to act as contour detectors. This phenomenon is discovered not only in learning a handwritten digits dataset, but also in learning retinal neural activity measured in a natural-movie-stimuli experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses

Revealing hidden features in unlabeled data is called unsupervised feature learning, which plays an important role in pretraining a deep neural network. Here we provide a statistical mechanics analysis of the unsupervised learning in a restricted Boltzmann machine with binary synapses. A message passing equation to infer the hidden feature is derived, and furthermore, variants of this equation ...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

A correlation game for unsupervised learning yields computational interpretations of Hebbian excitation, anti-Hebbian inhibition, and synapse elimination

Much has been learned about plasticity of biological synapses from empirical studies. Hebbian plasticity is driven by correlated activity of presynaptic and postsynaptic neurons. Synapses that converge onto the same neuron often behave as if they compete for a fixed resource; some survive the competition while others are eliminated. To provide computational interpretations of these aspects of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.07943  شماره 

صفحات  -

تاریخ انتشار 2017